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Thermal and inertial modes of convection in a rapidly rotating annulus
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The nature of the primary instabilities that arise in a fluid contained in a fast rotating cylindrical annulus with
slightly inclined plane top and bottom boundaries, radial gravity, and internal heating is numerically analyzed.
It is shown that for moderate and high Prandtl numbers, the onset of convection is described by a competition
of azimuthal thermal modes with different radial structure, which dominate in different regions of the param-
eter space. By the combined effect of the inclined ends and rotation, there are modes that are attached to the
heated wall and slanted to the prograde direction of rotation, and others which are straight and fill the
convective layer. Nevertheless, for very small Prandtl numbers the velocity field of the dominant modes
corresponds essentially to the inertial solution of the Poinegeation, and the temperature perturbation is
forced by this velocity field. In addition, a detailed exploration of the critical Rayleigh numbers and precession
frequencies of the convective modes versus the radius ratio and the Coriolis parameter, for different Prandtl
numbers, is presented.

PACS numbds): 47.27.Te, 47.20-k, 47.32~y

[. INTRODUCTION aligned with the axis of rotation and maintain the two-
dimensionality, except at their ends, forced by the geometry
In many geophysical and astrophysical fluid systems, th@nd/or the boundary conditions. In the experiments, the con-
global circulation is dominated by the existence of high ro-vection is induced by a radially external heating, and the
tation rates, moderate temperature gradients and, of coursecantrifugal force emulates the gravity field. The small real
spherical geometry. The main difficulty in dealing with this gravity at first causes the formation of the axisymmetric
problem is the curvature of the layer, since it implies tacklingstate, which loses stability by breaking its rotation symmetry.
fully three-dimensional computations. For this reason, onlyThe Spacelab experimefi¥] avoided this state, and also
in the last decade have significant advances been achievedéonfirmed that the theory di2] at least gives the correct
this subject. dynamic description of the convective mode. In the space,
The first attempts to find the asymptotic dependence ofhe gravity was supplied by an electrostatic radial field. All
the non-axisymmetric onset of thermal convection in self-this experimental evidence led to the acceptance of the rotat-
gravitating spheres were ¢1,2]. In the first paper, the au- ing annulus with radial gravity and inclined lids as the sim-
thor looked for a normal mode solution of the equationsplest model that retains the main general features of thermal
concentrated in a layer close to some cylindrical surface witltonvection in rotating systems.
a symmetric axial velocity about the equatorial plane. Ac- The 3D numerical computations ¢8,9] have also re-
cording to the same method, [2] it was shown that the cently revealed some important discrepancies between their
most unstable mode had to be antisymmetric, and the criticalwn and[1,2] results. The estimation of the asymptotic
Rayleigh number was first corrected. In addition, the authopower-law for the onset of convection at large Taylor num-
calculated the critical Rayleigh number by assuming that in d&ers bears out the power dependence, but clearly states that
Boussinesq fluid under very fast rotating conditions, the mothe analytical coefficients give rise to critical Rayleigh num-
tion had to be dominated by the rotation, and consequentlpers and precession frequencies of the waves which are un-
the Taylor-Proudman theorem was almost fulfilled in anyder and over, respectively, those given by the numerical
geometry. Consequently the thermal convection in the sphermenes. In addition, for small Prandt numbers the structure of
was treated as if it were the two-dimensional perturbation othe marginal modes is not a tall column. If the fluid has a
a basic axisymmetric staighermal wind of a suitable fast very small Prandtl number, it selects at onset an inertial
rotating annulus with inclined lids, which cut the sphere atmode attached to the outer wall, i.e., the pattern of convec-
the latitude that minimized the Rayleigh number, i.e. at aboution will be a short equatorially trapped vortex influenced by
63°. This perturbation method gave rise to critical valuesthe existence of the curved outer boundary. Otherwise, for
different than the general asymptotic theory[df2] but de- moderate small Prandtl numbers, the thermal columnar rolls,
scribed the power dependence correctly. Furthermoreyy effect of the curvature and of the rotation, can spiral from
weakly nonlinear calculations ¢8] hinted that the critical the 63° latitude to the equatorial region, also departing from
Rayleigh numbers given by both theories underestimate itthe annular constraint.
real value. The disagreements at moderate small Prandtl numbers
The results were compared with laboratory investigationsvere explained by the revised asymptotic theory of thermal
of the onset of free thermal convection in fast rotating sphericonvection in rapidly rotating systems [df0]. In this paper
cal shells and cylindrical annyl#—6], among others. In both the author used a unified formulation for self-gravitating
geometries, and in the range of parameters explored, the pageophysical and centrifugal-force-driven laboratory systems
tern of convection is columnar. The straight columns aren the limit of weak inclination of the outer boundaries rela-
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tive to the equatorial plane. He demonstrated that the sepa- yuxw=0 on z=0, L(r), (2.30
rated formulations are identical at leading order, but at next
order differ in a term that depends on the Prandtl number\Nhereazzw(l— v?), D=4,— 1k andu=(u,v,w) refers
The formulation leaves aside the outer trapped modes, ang the velocity field in cylindrical (, 6,2) coordinates. As in
consequently agrees very well wifB] results. However the  he preceding case, the plus sign is valid for the top bound.
asymptotic limit starts to fail for Prantdl numbers less than), fact, as we will see later, experimental and numerical re-
0.1, o ) . sults prove that this solution also exists in the core of the
The model of the cylindrical annulus with oppositely fiid with the realistic no-slip conditions. If so, according to
sloping top and bottom boundaries, and heated from the oufo]  sine>EY4 and the weak vertical circulation generated
side, has been extensively used by Busse and co-workers f{ the Ekman layers and confined near them can be ne-
understanding some dynamical features observed in the 3@1ected. In the inequalityE is the Ekman number and the
mospheres of Jupiter and Saturn, such as the band structusg;ndtl number defined below.
of the major planets, and in general the dynamic of fast ro- y<1, and irrespective of the kinematic boundary con-

tating systems. They use the small gap approximation, angisions atz=0, L,, there exists a basizindependent con-
by a perturbation method find a quasi-geostrophic solutiory ,ction state
bifurcating from the purely radial conduction state that exists

if the ends of annulus are only slightly inclined. In this paper, r
we make use of a similar model, but retain the curvature of In—
. . L R I
the side walls breaking the mid plane symmetry introduced T()=AT—+T, u=0,
by the previous approximation. Because of this symmetry In 7

breaking we are able to find spirally marginal modes of ther- . . .
mal convection in annular geometry. with AT=T;—T,. The stability of this state will be de-

The rest of the paper is organized as follows. In Sec. Il wescribed nondimensionalizing the Boussinesq Navier-Stokes,

introduce the formulation of the mathematical problem andN@SS conservation and energy equations by means of the gap
the numerical method used to solve it. In Sec. Il we analyz&Vidth, the temperature difference between the side bound-

the dissipationless problem and, wherever possible, the maf!ies and the thermal diffusion tim##/ x, where « repre-
ginal convection modes are identified with the dominant dif-S€nts the thermal diffusivity. These equations, written in the
fusive modes found in Secs. Il A, Il B, and Il C for Prandtl rotating frame of reference, are

numbers 0.7, 7, and 0.025, respectively. Finally, the paper | 5 R .

closes with a discussion about our own and related results, ¢ (ditu-V)u=—Vp+Vou+Rade 20 "QXu,

and a summary of the results obtained in this paper. (2.49

Il. MATHEMATICAL MODEL V-u=0, (2.40
AND NUMERICAL METHOD -1

r
(+u-V)0=V?0 - —

n nu-e,, (2.40

We consider an annulus which is rotating about its axis of
symmetry with angular velocit§2. The gap width igd=r
—r;, wherer; andr are the inner and outer radii, abqr)  where® refers to the deviation of the temperature with re-
is the height of the layer, which is supposed to decreasgpect to the conduction profild,(r). & is the unit vector in

outwards with an angle, which is constant with respect t0 e radial direction, and Ra angl are respectively the Ray-
the horizontal plane. The geometric parameters of the proq-eigh and Prandtl numbers defined by

lem are the radius ratig=r;/r, the aspect rati@=L,/d,
wherelL, is the mean height, angt=tan¢. The inner and aATgd? v
outer side walls are maintained at constant temperaflires Ra= Ty T
and Ty, respectively, withT;>T,, and thermally insulating

boundary conditions at the top and bottom ends are adopteéje:qg(r)_ﬂx (Qxr)|) is the effective gravity across the
I T+0.T=0 2.1) convective layer, which is also assumed to be radially in-
Yort =0z ' ' wards and constant is the coefficient of thermal expansion
and v the kinematic viscosity.
In order to eliminate the pressure by using the incom-
pressibility condition, and taking into account the periodicity
of the annulus in the azimuthal direction, we assume that

with the plus sign being valid for the top end. The gravity
vectorg(r) is taken radially inwards. For the velocity field,
no-slip lateral bounding surfaces

u=v=w=0 onr=r;, rg, (2.2 N N N R
u=fey,+VX(gey+ e, + VXV X(pe,). (2.5
and because we are trying to findzéndependent solution,
stress-free ones on the slanted top and bottom ends are inihe potentiald andg are related with the azimuthal averages
posed, of the radial derivatives of the full potentialg and ¢. Ac-
cording to[11,12 the linearized Eqs(2.4) have been re-
(yD=*4,)v=0, (2.3a  placed by others written in terms of the velocity potentials

(—ad,=d,)W+(ad, = d,)u=0, (2.3b (07 19,~V?3)f=20"100,g9, (2.6a
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3
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(2.7b
-500 : - : :
5 1 ) 1 0 2 3 4 5
(,=V9)O=— rinz 3rz¢+F5’0¢ ) (2.79 107" x Rayleigh number
h FIG. 1. Marginal stability curves of the dissipationless problem
where for 0=0.7, 7=5000,n=16, »=0.5. The value of indicates the
1 1 degree of the dominant radial polynomial.
Vﬁ:Fé’r(rar)"'r_zage! 1 1
‘9r2z¢ozrl9§zlﬂ0:7;30¢01Vﬁ¢:52®o:0 on z=0, B.
~. 1 1, (2.9b
V2=—0(rdp) ——+d;,,
r r The first, second, and fourth conditions of H.9b are
identically satisfied and only the third one will be relevant.
As is shown in[17], equivalence betwee(®.4) and (2.7)
D :Far(m formulations requires an additional boundary condition at the
lateral boundaries, which at leading order is also identically
© being the zero azimuthal mode. satisfied,d7, V=0, and a gauge conditiogy=0, which,

This system has been separated into two parts. The fir§ke the third of (2.9a, only appears at higher order. In this
one(2.6) corresponds to the axisymmetric case, and it show§ase, these conditions are not needed becaus@ £t does
that a (6,z) independent velocity and temperature fields arenot even appear for theindependent flow, and the problem
not feasible. can be formulated in terms of a stream function.

It is known (see[13,14)) that with boundary conditions  BY substituting Eq(2.8) into Eq.(2.7), retaining the lead-
(2.3, provided thate=0 and the rotation rates are high ing order terms in the limit of high rotation rates ampek1,
enough, the onset of convection is everywheiedependent and averaging ovez by using the third boundary condition
andw=0, i.e., convection sets in as a thermal Taylor col-of Eq.(2.9b, the equations are reduced to
umn. With no-slip top and bottom boundaries, viscous ef- Ra 1
fects are only important in very thin Ekman boundary layers “1, _v2\v2, — =
[15], and the flow remains nearly geostrophic. Furthermore, (0 0= V) Vigo=—-000+ 7-dgtho, (2.108
we have already seen that the experimental reqdli§]
showed that, with slightly inclined top and bottom engls,
<1, the basic pattern of convection can be a columnar azi- (6= V)@ o=— ———dyiho, (2.100
muthal wave. Thus, we look for a primary quasi-geostrophic r=inz
solution of Eq.(2.6). For this purpose, as ii6], we split the
functions into

where we have defined the Coriolis parameter

~ 40,y
y(r,0,z,t)=tho(r,0,t) + ¢(r,0,z,t), (2.89 =g
¢>(r,6,z,t)=?]>(r,0,z,t), (2.8b and (), being the rotation rate in viscous units.

The boundary conditions are now

O(r,0,2,t)=0,(r,0,t) +0(r,0,21),  (2.80 Ve i o= ®g=0 on Fr. ro. (211

where’z:/;,?;‘) and® are ordery. These equations are solved numerically by expanding the
Then, at leading order(2.2) and (2.3) boundary condi- eigenfunction (4y,0,) in the form
tions can be written as

~ — St ing
Yo=0,ho=Vap=0,=0 onr=r;, ry, (2.93 %(X'g't)_esgg Fmnlim(X) €7, (2.129
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FIG. 2. (a) The critical Rayleigh number, ar(t) the corresponding precession frequency as a function of the Coriolis paramédtar,
0=0.7, n=0.5. (c), (d) are enlargements of the same figure showing the region where the interchange of the two families of dominant
modes takes place. The valuerofndicates the azimuthal wave number.

®o<x,a,t>=e3‘§ Yinpi(x)e"?, (2.12h

where Re§) is the growth rate and Insj the precession
frequency of the wave, prograde if Is)<0 and retrograde

if Im(s)>0. The radial coordinate ix=2r—4, with &
=(1+ n)/(1—- ), and the integersn,n) and (,n) indicate
the structure of the functions in the radial and azimuthal
direction respectively, i.eh,(x) andp,(x) are linear com-
binations of Tchebyshev polynomial,(x), defined on the
interval [ —1,1], which verify the boundary conditions. The
radial base of the temperature will be

pi(X)=—To(x)+T|(x) if =2 even,
pi(X)=—=T1(x)+T(x) if I>2 odd,

and that of the stream function

m2

4

m2

hm(X)_( 1)T0(X)_ 7 1200+ (%)

if m=4 even,

hin(X) = §(M?=9) T1(X) = §(M?— 1) T3(X) + Tyn(X)
if m>4 odd.

IIl. RESULTS

The linear stability problem is solved for experimental
Prandtl numberg-=0.025, 0.7, and 7, and a detailed explo-
ration of these cases is made. All the results are presented
with the precession frequencies plotted in viscous units.

In order to identify the physical nature of the solutions
that may be present at the onset of convection, Fig. 1 shows
the marginal stability curves of the dissipationless problem
for a fluid of 0=0.7, 7=5000, »=0.5, n= 16 (the variation
of these parameters only gives quantitative changes in the
figure). The solutions that are over the curve labeled with
=2 correspond to basic solutions dominated by the lower
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FIG. 3. Contour plots of the temperature perturbation corre-
sponding to dominant modes of the same azimuthal wave number
n= 13 for the parameterg=0.5, 0=0.7, (upper half 7=3000 and
(lower half 7=6000.

order polynomials,h,(x) and p;(x) of the expansions
(2.12), while the small inner ones belong to solutions domi-
nated by the higher order polynomidls 3,4, . . . ,etc. Our
waves always travel counterclockwise because of the slope
of the boundaries we have chosen.

The upper branch of each curve corresponds to waves
whose precession frequency tends to zero when the radial
temperature gradient decreases, indicating that they are con-
vective. On the other hand, the frequency of the waves over
the lower branches increases when the buoyancy force de-
creases, until the frequency of the Rossby waves, at
Ra=0, is reached. Therefore they are inertial waves. The
first waves are slow near this point because the buoyancy
force almost balances the ageostrophic part of the Coriolis FIG. 4. (3) Marginal stability curves of the first three=16
force, and they remain attached near the outer wall. For thazimuthal modes with different radial structure for the parameters
second, the main balance is between the ageostrophic forge=0.5, 0=0.7. The solid, dashed and dotted lines correspond to
and the quick inertial oscillations, the buoyancy force play-modes withl=2, 1 =3, andl=4 radial structure, respectivelb)
ing a secondary role. For Rayleigh numbers corresponding tontour plots of the temperature perturbation in ¢hel, e points
frequencies neapg/2, the three terms of the dissipationless 'aP€led in 4a). In the clockwise direction starting from the top,
equation obtained fronf2.10a are of the same order. If the (first third) 7=1000, (second thirl 7=5800 and(third third) 7
Rayleigh number is increased, the marginal waves become 2000-

unstable, and viscosity is needed to dissipate the energy fur- . . . . .
nished by heating. y P 9y Inviscid inertial wave and that the thermal field plays a pas-

Furthermore, we have compared the precession fresive part. At next order it is enough to maintain the wave
quency,w, of the preferred modes of convection found in the @0ainst viscous c!lsslpatlon, i.e., the dynamics is induced at
dissipative stability analysifsee Fig. &), Fig. &b), and on;et py thg Coriolis term. 'Itr=0.7, thg frequency of the
Fig. 10b)] with the frequencywg, of the Rossby waves of oscillations is close tag/2. Finally, for higher Prandtl num-
the Poincareequation. Table | contains both frequencies forP€r fluids, the diffusion term becomes of the order of the
the dominantn mode that exists at=5000, =0.5 and ageostrophic and buoyancy terms. Theg and w are very
every o explored. Notice that Fig. 1 only gives information _ _ )
about thec=0.7 case, because it is plotted for=16. The TABLE I. Comparison of the precession frequencies,and
wg values for the other Prandtl numbers have been obtaineﬁ_R'_Of '_[he preferred modes of cc_;nvectlon for the d|55|pat|ve and
from the equivalent figures plotted for the dominant modesdlSSlpatlonIess problems, respectively. All the frequencies are ex-
n=7 if ¢=0.025, andn=17 if o=7. As predicted at this pressed in viscous units. The parameters7ar&000, 7= 0.5.

high rotation rate the agreement is very good for small vis-

cous flows, indicating that in low Prandtl number fluids the” “R ¢ n

oscillating modes are mainly of inertial type. A similar result 0.025 —730 -678 7
was found by{9] for a spherical shell. By means of a pertur- 9.7 —437 —241 16
bation analysis in the limit of high rotation rates, the authory —417 —42 17

showed that the onset of convection is to leading order aa
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FIG. 5. (@) The critical Rayleigh number, an@) the corresponding precession frequency as functions of the radius #watfor o
=0.7, 7=8000. (c), (d) are enlargements of the same figure showing the region where the interchange of the two families of dominant
modes takes place. For clarity, only dominant modes have been plotted.

different, and it is not possible to identify the dominant eters. In this case, the same family of azimuthaihodes
modes of the dissipation problem with those of the dissipadominates sequentially, and as can be clearly seen in Figs.
tionless one. We call the marginal waves that appear at onsetc) and 2d), which are enlargements of Figgagand Zb)

for moderate and high Prandtl numbers thermal modes, beyear r=5500, there is a family crossing at=5628 that
cause both rotation and temperature effects are needed {®oduces a backward jump of the dominant azimuthal wave
destabilize the conduction state. number fromn= 17 ton= 13. In consequence, there are two
solutions with the same wave number13,14,15,16,17,
one of each family, which dominate at different rotation

As an example of moderate Prandtl number, we haverates. The structure of these modes is shown in Fig. 3, where

taken o=0.7. Figure 2 displays the Coriolis parameter de_the contour plots of the temperature perturbationrferl3,

pendence of@) the critical Rayleigh number, antb) the  (UPPer half 7=3000 and(lower halff =6000 are drawn.
precession frequency for a radius ratje=0.5. The labelsn ' n€ first one is analogous to the solutions found bg] in
indicate the azimuthal wave number, and the heavy line of€ limit of the small gap approximation with the same
the frequency curves represents the precession frequency Beundary conditions. In spite of the existence of the Coriolis
the dominant solutions at any rotation rate. This notation iforce, they nearly maintain the reflection symmetry in verti-
followed throughout the paper. cal planes that contain the axis of rotation, i.e., they are con-
The cusps in the Rayleigh number figure and the jump#$ected to the Taylor columns that exist with horizontal lids,
between thin lines in the frequency figure are due to changeg=0 (see[13,14]). On the other hand, the second one is a
of eachn mode to another of the same azimuthal wave numxvery tilted structure to the prograde direction of the wave and
ber, i.e., there is a multiplicity of azimuthal modes gatheredt has clearly broken this reflection symmetry. It can never be
in families that can dominate for a different range of param-found in the small gap approximation, because with this ap-

A. Moderate Prandtl numbers
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FIG. 7. Contour plots of the temperature perturbation for the
parameters;=0.5, 0=7, (upper half n=14, 7=2000 and(lower
half) n=20, 7=9000.

vection remains confined to the inner boundary. By contrast,
the contour plot of poiné shows that the rotation also affects
the highn solutions with basic radial structure corresponding

to =2, but the effect is less spectacular because the radial
dependence does not change. In the range of parameters ex-
plored, dominant modes with triple layer structlire4 (dot-

ted line have not been found.

Figure 5 displays the radius ratio dependencédabfthe
critical Rayleigh number, an¢b) the precession frequency
for a Coriolis parameter=38000. In these figures, the sepa-
ration between the central lines is due to the fact that only
dominant modes have been plotted. As in the preceding case,

NN (c) and(d) are, respectively, the enlargementg@fand (b),
=75 p 3 . 5 5 T now around the poing=0.605, where a forward jump from
107 % Coriolis parameter n=21 to n=27 is detected, so azllmuthal .modefs
=22, 23,24, 25, and 26 are never dominant. This value has

FIG. 6. (a) The critical Rayleigh number, antb) the corre- ~ been calculated up to an error of 0.02% and the gap of azi-
sponding precession frequency as functions of the Coriolis paramuthal modes is always maintained. For=0.7 and 7
eter, r, for c=7, =0.5. =0.15, the jumps exist for all the values ofxplored, pro-

vided that7=2300, i.e., the smaller theis, the smaller the
proach, all the dominant eigenfunctions have a reflectiony value for which the forward jump happens. It is important
symmetry in the mid plane of the layer. This fact is in agree-to point out that the preferred modes of convection fpr
ment with the finding that tilted modes are dominant for<0.605 are wall attached and slanted azimuthal modes like
higher Coriolis parameters when the radius rajie>1. For  those of the lower part of Fig. 3, while i>0.605, the
example, if =0.7, the family crossing takes place fer preferred modes of convection are straight colurtsese the
=13367, but foryp=0.3 it occurs forr=3353. Another im-  upper part of Fig. B8 Nevertheless, now, depending on the
portant property of the second family of solutions is that therotation rate, slanted modes can now come from modes with
vortices remain attached to the heated boundary of the annthe basic radial structure=2, or from modes with basic
lus. To understand the nature of these dominant modes, weadial structurd =3 at ~—0. For example, in Fig. 5 domi-
present in Fig. &) the contour plots of the temperature per- nantn=4, . ..,10modes come fronh=2 modes wherr is
turbation of the points, d, ande of Fig. 4@). This figure decreased to low enough values, while dominamt
shows the Rayleigh number of the three firsts azimuthal =11, ...,21modes aré =3 modes at any value af. So at
=16 modes versus the Coriolis parameter. The solutions lai=0.35 there is also an interchange of solutions, which can-
beled asa andb at 7=1000 andr=9000 look like those of not be easily detected because the plots of the dominant
the upper and lower parts of Fig. 3, respectively. As can beigenfunctions closely resemble each other. Moreover, at this
seen in the contour plot of poimi the seconch=16 mode  very high value ofr, there is no multiplicity of the modes
corresponds to a solution dominated by tke3 radial poly- n=4,...,10 ofFig. 5, but they are continuously changing
nomial, which becomes tilted by the effect of rotatiGee from anl=2 slanted mode to thie=3 straight mode, which
the contour plot of poind), when the rotation rate is in- has to exist fory values near one. In general, at a fixed
creased. Finally, at very fast rotation rates this double columlow n slanted modes arise from single changing modes,
nar pattern is destroye@ee lower part of Fig.)3and con-  while high n slanted modes are=3 solutions of the prob-

Precession frequency
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FIG. 8. (a) The critical Rayleigh number ar(@) the correspond-
ing precession frequency as functions of the radius ragjdpr o
=7, 7=8000.

lem. The results of19] for a fluid of =1, 7=2800 agree
qualitatively well with those for the width gap described
above. The authors used the small gap approximation with
stress-free side boundary conditions, and expressed the cur-
vature of the end surfaces by means of a point dependent
tangent of the angle of inclination of these surfaces
=1yl 1+ €f(x)], where y, is a small constant. Withe
=0.75, by increasing the wave number, they also found the
transformation of the radial structure of a fixed azimuthal
mode. This is what they called the switch-over phenomenon.

B. High Prandtl numbers

All the results presented in this subsection correspond to FIG- 9. (& Marginal stability curves versug of the first three
fluids of o=7, but we have checked up to=100 that the n=14 azimuthal modes with different radial structure for the pa-

marginal stability curves plotted versus the Coriolis param—:gm?;?::sg;gﬁgotﬁézgﬁtlgu? Cllgtzkcv)‘]ﬁ'fﬁeﬂ?t'g:‘aﬁ?g'negrtflj?tgggﬁ 0
eter in Fig. &a), and the corresponding frequencies in Fig. P, P P P

6(b), are essentially the same for all the fluids included in.the points labeled, b, andc in #=0.4 of Fig. 43), and(c) those

this range of Prandtl numbers. In general, due to the dissipallq the pointse, f, andd for »=0.8.
tion, the scale of convection is very small, even for an intersamel =2 radial structure. Figure 7 shows the contour plots
mediate width of the gap. Now the azimuthal modes domi-of the dominant temperature perturbation fe+ 2000 in the
nate, increasing successively from=11 to n=22. They upper half of the figure and for=9000 in the lower half.

have a low precession frequency and always maintain thBlow, the differences between both halves are caused just by
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FIG. 11. (a) The critical Rayleigh number, ang) the corre-

sponding precession frequency as functions of the Coriolis paransponding precession frequency as functions of the radius rafio,

eter, 7, for 0=0.025, »=0.5.

a continuous increase in the radial phase shifk), and the
inner confinement of the amplitud&(x) of the (=2, n)

azimuthal wave

(X, t)=A(X)SiIN N+ wt+ ¢(X)],

for 0=0.025, 7=8000.

show that thd =4 mode maintains its radial structure along
the dotted curve. It is preferred for 0.85<0.87, but then

it is superseded by the solid line of the, at filst2 mode,
which continuously changes to the 3 mode, which in turn
exists for »—1. The cusp in this curve just indicates the
zone where the transition has clearly finished. On the other

for the highest values of. As a result, convection becomes hand, thel=3 mode at»=0.1 transforms into thd=2
attached to the inner wall and its radial scale tends to be&node of »— 1. Consequently, it seems very difficult for an

comparable to the azimuthal scale.

In contrast to the preceding case, Fig$a)8and 8b),

| =4 radial mode to become dominant at onset in the small
gap approximation. These modes become distorted in the

which display the critical Rayleigh number of the first domi- same way as the=4, ... ,10modes found fore=0.7. In
nantn modes and their corresponding frequencies versus therder to see this, we present in FiggbPand 9c) the con-
radius ratio, show that for narrow gaps the crossing betweetour plots of the six solutions labeled on Fig@p at »
families of azimuthal modes only drops low enough to sug-=0.4 and aty=0.8, respectively. On the leftz(=0.1), all
gest that for another Coriolis parameter the second azimuthahodes are initially almost straight because 14 is high
mode could be selected at onset. Surprisingly, the contownough, but the plots a&f ande, placed at the top show that
plot of its eigenfunction makes it clear that it belongs to thewhen 7 is increased, the column attaches to the inner wall
| =4 radial structure, i.e., it fills the layer forming a triple and tilts until the double column similar to that 6f=0.7 is
column. In order to find out what happens with the missingformed. Next, in a clockwise direction and f display the

I =3 mode, the first three=14 modes are presented in Fig. opposite change. While the almost existent reflection sym-
9(a) as a function of. On this figure we have labeled, on metry in vertical planes is absolutely broken, the inner col-
the left and right of the curves, the radial structure of everyumn starts to diminish. This situation favors the connection
mode at the ends of the interval. The labels of the figureof the two vortices and the formation of a single one. The
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strong discrepancies could only be due to the different heat-

225 ing, since the inertial wave exists independently of the tem-
perature gradient.
175
§ IV. DISCUSSION
a1 We have seen that in a fast rotating annulus, such as in a
§ rotating spherical shell, the onset of convection depends
A 75 L strongly on the Prandtl number. A physical distinction has
been made between the hydrodynamic instabilities dominant
55 at small Prandtl numbers and the essentially thermal insta-

bilities dominant at moderate and highvalues.
To summarize the effect of rotation on the dominant
—25_] 0 _(')5 0'0 0‘5 10 modes of convection, we have plotted in Fig. 12 the function
’ ’ ) ’ ’ ¢(x), defined in Sec. Ill B, versus the radial coordinate for
some dominant modes of the three Prandtl numbers pre-
FIG. 12. Radial phase shift of the traveling wawg(x), for sented in this paper, at a low and a high Coriolis parameter.
dominantn modes forr=2000 andr=10000. The other fixed pa- The dotted lines ofr=0.025 are almost constant, except
rameters are;=0.5 ando=7 solid line,o=0.025 dotted line, and near the side wall, and the slope of those corresponding to
o=0.7 dashed line. The slope of the curves is related to the radigh=7 0.7 for 7=2000 is so small that in any case the col-
inclination of the columns. umns nearly maintain the reflection symmetry in vertical
planes. Forr=10000, the slope of radial phase shift is
plots of modes labeled and d show the aforementioned d¢(x)/dx=1, indicating that there is a continuous strain
distortion of thel = 4 radial mode. from columnar to slanted modes with rotation. This last case
As a final clarification, in the same case @s-0.7, the fulfills the condition of spiraling columnar convection de-
low n-modes become slanted at lower rotation rates than thined in[8], but according to the asymptotic theory of ther-
higher ones. So, ay=0.1 not all the modes are necessarily mal convection in rapid systems [@f0] and to the numerical

slanted, as in the case af_)l' where this is imposed by the results 0f[8], in Spherical geometry, the smaller the Prandtl
mid plane symmetry of the layer. number, the stronger the spiral effect. So the annular ap-

proach for the study of convection in self-gravitating bodies
makes sense if the onset of convection can be described at
C. Small Prandtl numbers onset by columnar not very strong spiral convection. If not,

Figures 10 and 11 display the results obtained with thethe morphology of the preferred modes and the subsequent

small Prandtl numbes=0.025, for the same range of pa- dynamics would be completely different. Obviously, the

. . limit of validity depends on the rotation rate.
rameters as those in Figs. 2 and 5. We have carefully We have also compared the power laws of the critical

checked for a W'de. range of pgrameters that aII' the mOdeﬁayleigh number and the precession frequency estimated
correspond to the inertial solutions of the two—dlmen5|onalfrom our numerical results with

Poincaresquation, and that at any rotation rate or radius ratio
they are columns that almost maintain the reflection symme- _ a3 _ o3

try in vertical planes, in addition to having the simplést Ra=C(0)7™ and w.=C(a)77,

=2 radial structure. As expected, Fig.(@0shows that the

azimuthal scale of convection is greater for small Prandtbbtained in[19] for the small gap approximation. Witk
numbers than for moderate ones. This happens because the/,0.7, =0.5, we have found a power of 1.26 for Rend
precession frequency of the waves is so fast that at highne of 0.69 forw., which agree very well with the law.
rotation rates the frictional forces are not needed for balancHowever, with c=0.025, the results are 0.76 for Rand

ing the ageostrophic term of the equation. Beyond their in0.89 for ., which differ greatly. We assume that this is
ertial origin, we have not found any similarity between thesebecause a Rossby wave is in fact a topographic wave, and a
columnar modes and the equatorially trapped solutions foundmall variation in the geometry of the domain has a strong
by [9,20Q] in rotating spherical shells with internal heating. influence on all its characteristics. Whereas a convective roll
According to[21], the latter are dominant whéh<1.70~ 4, is caused by a thermal instability, and if the boundary con-
whereT is the Taylor number. So for any number one can ditions allow the same type of bifurcation, roughly speaking,
find a rotation rate that gives rise to another form of convecthe geometry only produces minor changes in the coeffi-
tion. The condition of three-dimensional convection re-cients of the power laws and the deformation of the columns.
stricted to low latitudes fails at not very high Taylor num- So, the narrow gap approximation and the annular geometry
bers; the spiraling columnar mode then becomes dominanmust be used carefully with small Prandtl numbers.
Consequently, the transition from inertial to thermal convec- From our own and other published results, we have esti-
tion is abrupt. However in annular rotating convection, for amated that forc=0(1), themarginal modes of convection
fixed small enough Prandtl number, the same inertial mode iare thermal weakly spiraled columns in spherical and annular
preferred at any rotation rate. Furthermore, as far as we hawgeometries. For this reason we have presented a detailed de-
been able to ascertain, there is a continuous change from omseription of the radial and azimuthal dependence of the ther-
convective mode to another. It seems unlikely that suchmal modes with the gap width and the Coriolis parameter. It
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is worth pointing out that we have found domindrt2,3  the nonlinear regime. The linear stability analysis of the non-
slantedx-modes in the linear regime, and some indicationdinear solutions and the time-dependent evolution of more
that even thd =4 could be dominant for other parameters. complex regimes should lead to a better understanding of
With a fixed value of the radius ratio, the spirally modes areconvection in rotating systems.

preferred at very high rotation rates, while with a fixed rota-

tion rate _they are preferred for small radius ratios. Therefore ACKNOWLEDGMENTS
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